Топливо в брикетах

Производство топливных брикетов в Украине. Оборудование для производства топливных брикетов из отходов биомассы. Экологически чистое топливо. Экструзионное брикетирование отходов из биомасс.

Топливо в брикетах

Производство топливных брикетов в Украине. Оборудование для производства топливных брикетов из отходов биомассы. Экологически чистое топливо. Экструзионное брикетирование отходов из биомасс.

Топливо в брикетах

Производство топливных брикетов в Украине. Оборудование для производства топливных брикетов из отходов биомассы. Экологически чистое топливо. Экструзионное брикетирование отходов из биомасс.

Топливо в брикетах

Производство топливных брикетов в Украине. Оборудование для производства топливных брикетов из отходов биомассы. Экологически чистое топливо. Экструзионное брикетирование отходов из биомасс.

Топливо в брикетах

Производство топливных брикетов в Украине. Оборудование для производства топливных брикетов из отходов биомассы. Экологически чистое топливо. Экструзионное брикетирование отходов из биомасс.

 

Производство хвойно-витаминной муки

Древесная зелень по химическому составу сходна с травой, но содержит меньше каротина. В расчете на сухую массу в хвое содержится 6—12% протеина и нуклеиновых кислот, 70—80 % углеводов. В состав протеина древесной зелени входят около 20 аминокислот, в том числе […]

Бензилцеллюлоза

В 1921 г. была опубликована работа Гомберга и Бечлера [34] по бен — зилированию углеводов и главным образом целлюлозы. Позднее, в 1930 и 1931 гг. беизилированием целлюлозы занимались японские химики На — кашима [35] и Окада L36]. Гомберг и Бечлер […]

Производство биологически активных препаратов

Для производства биологически активных препаратов при­меняют древесную зелень хвойных пород. В хвое содержится 7— 15% липидов; под этим термином понимают вещества, со­держащиеся в живых клетках, растворимые в неполярных орга­нических растворителях. В состав липидов входят зеленые пиг­менты, каротиноиды, жирорастворимые витамины, эфирные […]

Производство хвойно-эфирных масел

Эфирные масла отгоняют от хвойной лапки диаметром до 0,8 см слегка перегретым водяным паром с температурой обычно 105—110 °С. Масло нерастворимо в воде и после конденсации паров образует верхний слой дистиллята, который отделяют во флорентине. Из пихтовой лапки получается 1,5—3 […]

Этилцеллюлоза

Изучение этилцеллюлозы началось значительно позднее по сравнещн с метилцеллюлозой. В течение ря,[ лет в литературе были извести только патенты Лейхса-Байера, Лилиенфельда и Дрейфуса. В 1929 г. появилась работа Берля и Шуппа [26 обследовавших патент Байера. Рис. 137. Соотношения между вяз­костью […]

ИСПОЛЬЗОВАНИЕ ДРЕВЕСНОЙ ЗЕЛЕНИ

Древесная зелень содержит эфирные масла, хлорофилл, раз­личные витамины (Вь В2, В6, С, Е, К, Р и др.), провитамин А (каротин), белки, жиры, углеводы, микроэлементы и другие ценные вещества. Такой состав древесной зелени дает возможность получать путем ее переработки эфирные масла, […]

Метилцеллюлоза

Дэнхэм и Вудхауз F1] Первые ввели в научную практику повторное исчерпывающее метилирование целлюлозы диметилсульфатом, которое они провели на хлопке. После многократных метилирований ими был по­лучен продукт с 44.6% метоксильных групп, сохранивший волокнистую структуру, нерастворимый в медноаммиачном растворе и в органических […]

Химическая переработка скипидара

Развитие производства дешевых органических растворите­лей, в основном на базе продуктов нефтехимического синтеза, привело к резкому сокращению использования скипидара в ка­честве растворителя. Основное назначение скипидара в настоящее время — синтез на его основе различных вторичных продуктов. Ранее для хи­мической переработки применяли […]

Химическая переработка канифоли

Основную часть сосновой живицы, получаемой при подсочке сосны обыкновенной, составляют смоляные кислоты. Это нена­сыщенные соединения фенантренового ряда, имеющие общую формулу С20Н30О2 (С19Н29СООН), образующие при перегонке живицы канифоль. Смоляные кислоты состоят в основном из кислот типа абие­тиновой, имеющих две сопряженные двойные […]

Распределение заместителей между первичными и вторичными гидроксилами целлюлозы

Реакционная способность различных гидроксилов целлюлозы была предметом изучения многих химиков, обследовавших распределение заме­стителей для многих производных целлюлозы: азотных эфиров, ацетатов, ксантогенатов, простых эфиров и других. Казалось бы, что в гомогенных условиях первичные гидроксилы реагируют быстрее, в то время как нри […]